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Abstract

An empirical metal recovery model that accounts for metal dissolution and transport in two domains is

presented.  The domains are defined as regions of the leach pad with different reaction kinetics and

transport properties: a “fast” domain and a “slow” domain.  The fast domain is the fraction of the ore that

readily releases gold to the leaching solution, and the slow domain releases gold more slowly.  The model

uses algorithms to allow the estimation of model parameters from column test recovery, particle size

distribution and head grade data.  To test the functionality of the metal recovery model, it was calibrated

to available physical, metallurgical and column testing data from 18 different ore samples, and column

test conditions (irrigation rate, reagent concentrations) were evaluated for relationships to model

parameters and results.  Estimated model parameters and related functions were successfully applied to

predict column recovery data for twenty separate ore samples with minimal adjustment.  The model was

also able to reasonably predict gold recovery from an operational heap after adjusting model parameters

to account for reduced recovery at the heap scale, and one parameter (penetration depth) may account for

differences in leaching processes that inhibit dissolution or transport.  The model results indicate that the

recovery model can be used as a relatively simple and reliable operational tool to provide information for

management of ore inventories and solution requirements in active heap leach facilities.  This model has

been filed for patent protection.
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Introduction

Heap leach system dynamics are complex, involving multiphase interactions between solid, liquid and gas

phases (Bartlett, 1998; Petersen and Dixon, 2007).  There are also multiple chemical reactions occurring

in the heap leach system. Furthermore, ores can contain numerous mineral types and are comprised of

particles that can vary in scale from microns up to meters (Bartlett, 1998; Bouffard and West-Sells, 2009).

Models applied to describe the heap leach system can be used as operational tools to track and

predict metal recovery in heap leach operations. Model input requirements vary with model complexity.

Consequently, the selection of an appropriate model should be dictated by the level of available data and a

desired level of model accuracy.  Readily available measurements of heap structure and ore physical,

metallurgical, and hydrological properties obtained from laboratory data may be sufficient inputs.

Typical inputs include ore type, head grade, particle size distribution, input leach kinetics, wetting rate,

heap lift configuration, irrigation rate, and time (e.g. Luiz et al., 2003; Mellado et al., 2009; Bouffard and

Dixon, 2008).  Gold recovery and pregnant solution gold concentration are the fundamental model

outputs. This paper describes the development of a metal recovery model for use as an operational tool at

an open-pit, run-of-mine (ROM), heap leach gold mine.

Model Description

The metal recovery model estimates cumulative gold recovery using first order rate terms to describe gold

dissolution and transport in two domains. One domain represents the fraction of gold that is readily

released and transported to the collection system. Gold recovered from this domain represents the

majority of initial gold recovery. For simplicity, this gold fraction is referred to as the fast leaching

domain. The second domain, the slow leaching domain, represents the fraction of the gold that takes

longer to be dissolved and transported due to kinetic limitations such as gold dissolution rates being

diffusion limited or dissolved gold trapped in pore space that has low solution conductivity. Gold

recovery rates from the slow leaching domain are low but represent the majority of late time recovery.

Model equations and algorithms have been filed for US patent protection.

Model Equation

The equation for recovered gold fraction as a function of the solution-to-ore ratio, Rsr, is:= × 1 − × − (1 − ) × (1)
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where Rmax is the maximum recoverable gold fraction as determined by laboratory assay, LE is the

leaching efficiency, F is the fast leaching gold fraction; k1 is the first order rate coefficient that describes

the dissolution and transport in the fast leaching domain; k2 is the first order rate coefficient that describes

the dissolution and transport in the slow leaching domain; s is the mass of applied leaching solution and r

is the mass of ore being leached. The ratio of s to r (s:r) is directly related to time and leaching rate. The

LE parameter accounts for variable field scale leaching characteristics. LE may be less than one, for

example under conditions of solution flow bypassing ore; or may be greater than one, indicating delayed

recovery of gold from underlying lifts.

Figure 1 presents an example of the recoverable gold remaining in each domain and the total

recoverable gold as leaching occurs. The term in Equation 1 represents the amount of gold

remaining in the fast leaching domain. The term equals F at the beginning of leaching and decreases as s:r

increases. The (1 − ) term represents the amount of gold remaining in the slow domain. This term

equals (1 − ) at the beginning of leaching and decreases as s:r increases. Both terms are subtracted from

1 to yield the fraction of recovered gold and then the amount is scaled by to account for the

maximum fraction of gold in the ore that can be recovered.

Figure 1. Fraction of recoverable gold remaining in the slow and fast domains and the total
recoverable gold remaining
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The gold in the fast leaching domain, F, is released quickly as shown by the steep slope of the

fast leaching domain curve at s:r values near zero.  The large change in the total fraction of gold

remaining in the ore coincides with the fast leaching domain release, demonstrating that the fast leaching

region is the predominant source for early gold recovery. In Figure 1, F equals 0.7 and gold in the fast

leaching domain is mostly recovered by s:r of 0.5 and at this reflection point the release of gold in the

slow leaching domain becomes the primary source of released gold.

Early Release Fraction (ERF) Algorithm

Equation 1 is empirical and does not directly describe the physical processes of leaching, so it is desirable

to derive a unique set of model parameter values that are based on ore physical properties. An algorithm

that predicts model parameters based on the fraction of gold available for early release (early release

fraction (ERF)) is used, but not detailed herein to maintain proprietary status. The ERF algorithm is based

on the principle that fast domain gold is mostly in small ore particles and also from the surface of larger

ore fragments. The ERF algorithm estimates the volume of early release gold and is functionally

equivalent to F. Figure 2 shows how different size particles contribute to the ERF. After leaching begins

the lixiviant will penetrate a small distance into the ore particle and dissolve gold. While similar in

concept to the shrinking core model (Roman et al., 1974) the ERF algorithm does not calculate reactant

diffusion and metal dissolution. For particles with a small diameter (e.g. particle on left in Figure 2) gold

is readily recovered from all locations within the particle and thus the entire particle contributes to the

ERF. The ERF contribution from particles with a diameter greater than the penetration depth (d) is

restricted to the outer region of the larger particle (e.g. particle on right in Figure 2).

Figure 2. Schematic of penetration depth and Early Release Fraction (ERF)
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The fast domain reaction rate, k1, is influenced by several properties that may inhibit gold

dissolution and transport including rock type, ore hydraulic properties, mineralogy, the amount of ERF

that is in smallest size fractions and reagent application rate to name a few. Nonetheless, the fraction of

ERF associated with particle size classes <0.5 inches is shown to be correlated to k1, and the ERF for all

size fractions is correlated to k2.

Results

Column testing data and ore physical property data were used for metal recovery model development.

Column test data sets were limited to ROM ore samples or ore samples with crush size ≥ 4 inches to be

more representative of the ROM material placed on the leach pads. A total of 18 ore samples were used

for model calibration and development of functions relating ERF to the rate parameters k1 and k2.

Calibration and Parameter Correlation

The model was calibrated to individual column test data sets and model parameters were developed by

iterative steps:

1. Calculate ERF for each ore sample and assign model parameter F equal to ERF.

2. Calibrate the model to the column leaching data using the assigned F parameter and

adjusting parameters k1 and k2.

3. Develop correlation of calibrated k1 to ERF using results from step 2

4. Recalibrate the model to the column leaching data using the assigned F parameter

and k1 equal to the value estimated from step 3 and then adjusting parameter k2.

5. Develop correlation of calibrated k2 to ERF using results from step 4

The calculation of ERF determined a d value which provided the best overall correlation between

model parameter values and ERF. Figure 3 presents the function relating k1 to ERF < 0.5”:= 1.3936 × . × . " (2)

Similarly, k2 was found to be related to the ERF. Figure 4 presents the function relating k2 to

ERF.= 0.0410 × . × (3)
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Figure 3. k1 as a function of ERF<0.5” (data from 18 calibrated models)

Figure 4. k2 as a function of ERF (data from 18 calibrated models)



7

Model Performance

The degree of confidence in model estimates of gold recovery using parameter values determined from

the ERF algorithm and Equations 2 and 3 was evaluated for two independent column leaching data sets,

Ore Type 1 and Ore Type 2.

Ore Type 1

Figure 5 presents the fraction of recoverable gold in each size class for the Ore Type 1 sample.  Eighty

percent of the Ore Type 1 sample gold mass is associated with ore sizes < 0.5 inches.

Figure 6 presents model predicted and measured gold recovery for the Ore Type 1 sample.  The

predicted recovery was greater than measured recovery (RMSE = 0.0892) because the ERF<0.5” was

very high (0.87).  The ERF<0.5” may overestimate k1 because Equation 2 was derived from samples with

a smaller fraction of gold associated with the <0.5 inch size classes than is observed for the Ore Type 1

sample.

To account for the larger fraction of gold in the smallest size classes, the k1 model parameter

value was derived by adjusting ERF<0.07” in Equation 2.  This modification to k1 resulted in an improved

prediction of gold recovery (RMSE = 0.0077) and indicates a potential limitation with the ERF<0.5”

relationship if a large fraction of gold is associated with ore particles much smaller than 0.5 inches.

Figure 5. Gold distribution by particle size class for Ore Type 1 sample
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Figure 6. Model predicted and measured recovery for Ore Type 1 ore sample

Ore Type 2

The Ore Type 2 sample was a 2-inch crush sample included in the analysis to serve as a second

independent sample for model validation. Figure 7 presents the fraction of recoverable gold in each size

class for the Ore Type 2 sample. Eighty percent of the Ore Type 2 gold is associated with ore sizes <0.5

inches.

Figure 8 presents model predicted and measured gold recovery for the Ore Type 2 sample.  The

model provides a good estimate of recovery (RMSE = 0.0355).  The ability of the estimated parameters to

more accurately predict gold recovery for the Ore Type 2 sample than the Ore Type 1 sample, may be due

to the presence of ore sizes >2 inches in Ore Type 1 which resulted in lower than predicted recovery rates.
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Figure 7. Gold distribution by particle size class for Ore Type 2 sample

Figure 8.  Model predicted and measured recovery for Ore Type 2 ore sample
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Heap Scale Model Predicted Recovery

The metal recovery model was applied to an operating heap leach pad to evaluate model performance and

parameter values at the heap scale. The recovery model was initially calibrated to the measured recovery

data from the first lift of the heap, which was comprised of two different ore types.  Starting parameters

for model calibration were derived from column data.  The LE parameter (Equation 1) for the first lift was

assumed to be equal to one. Solution to rock ratio data were estimated from leach pad ore stacking and

irrigation records for the first lift.

The time delay for reporting of solution to the bottom of the heap was estimated from the

estimated porewater velocity (v) of the solution, calculated as:= (4)

The solution filled porosity was estimated from laboratory hydraulic property measurements and

averaged 0.27 cm3/cm3 for the range of operational irrigation rates.

The starting and best fit parameters for the two ore types are provided in Table 1. Figure 9 and

Figure 10 present the measured and gold recovery model predicted recovered gold on a monthly basis and

cumulated over the model period, respectively.

Ore 1 model parameters from the column data were adjusted downward to improve the match

between model predicted and measured recovered gold for the first lift. Ore 2 model parameters

remained unchanged.

Table 1. Ore 1 starting and calibrated model parameters and Ore 2 model parameters

Material ERF ERF<0.5" Rmax F k1 k2

Ore 1 0.90 0.53 0.81 0.90 7.20 4.50

Ore 1 Calibrated 0.65 0.30 0.68 0.65 3.76 1.22

Ore 2 0.71 0.53 0.66 0.71 8.07 1.66

Applying the calibrated model parameters to the second and third lifts required increasing the LE

parameter to 1.05 for the second lift ore and 1.15 for the third lift ore to provide a more accurate

prediction of cumulative recovered gold.  The greater than one LE parameters for the second and third

lifts indicates delayed recovery of gold from the underlying lifts.  The degree of accuracy between model

predicted and measured gold recovery was 0.4% for the model time period.
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Figure 9. New gold under leach and measured and model predicted monthly gold recovery

Figure 10. Measured and model predicted cumulative gold recovery
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Conclusions

An empirical metal recovery model that accounts for metal dissolution and transport in two domains has

been developed. The model uses a physically based, ERF algorithm to estimate the model parameters.

Estimated parameters were applied to predict column and heap leach scale recovery data and results

indicates the ERF algorithm provides a means to adjust parameter estimates which are able to adequately

simulate variations in recovery that may be due to permeability or metallurgical constraints that may

inhibit metal dissolution or movement.  Additional improvements in the ERF algorithm may be realized

by expanding the correlation dataset to include additional samples with different particle size distributions

and metallurgical compositions.

The calibrated recovery model provided very good agreement between heap leach scale predicted

and measured gold recovery. This indicates that the recovery model calibrated to field data can accurately

predict gold recovery of subsequent lifts with slight adjustments to the LE parameter only.  The ability to

accurately predict gold recovery with the adjustment of a single, physically based parameter allows for

employing the model to better understand gold recovery limitation.  For example, the model may be used

to indicate if longer leach times (or shorter lifts) are needed to reach recovery goals.

Acknowledgements

This work would not have been possible without the support and collaboration over many years with

Barrick Gold Corporation.

References

Bartlett, R.W. 1998. Solution Mining: Leaching and fluid recovery of materials. Canada: Gordon and Breach Science Publishers.

Bouffard, S.C. and Dixon, D.G. 2008. Modeling pyrite bioleacing in isothermal test columns with the HeapSim model,

Hydrometallurgy. 95: 215-226.

Bouffard, S.C. and P.G. West-Sells. 2009. Hydrodynamic behavior of heap leach piles: Influence of testing scale and material

properties. Hydrometallurgy. 98:136-142.

Luiz, R.P., Villas-Bôas, R.C., and Kohler, H.M. “Mathematical Modelling of Gold Ore Heap Leaching”. 2003. In: André

Laplante (ed.) Proceedings of the International Symposium on Gold Recovery: 37-44. Montreal, Canada: Canadian

Institute of Mining, Metallurgy and Petroleum.

Mellado, M.E., Cisternas, L.A., and Gálvez, E.D. 2009. An analytical model approach to heap leaching. Hydrometallurgy. 95:33-

38.

Roman, R.J., Benner, B.R., and Becker, G.W. 1974. Diffusion model for heap leaching and its application to scale-up.

Transactions of the Society of Mining Engineers of AIME, 256:247-256.

Petersen, J. and Dixon, D.G. 2007. “Modeling and optimization of heap bioleach processes”. In: D.E. Rawlings and D.B. Johnson

(ed.) Biomining: 153-176. New York: Springer.


